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To decrease the computational cost when solving multi-conductor transmission lines (MTL), an iterative solution with spatial 

decomposition and based on the 2nd order finite-difference time domain (FDTD) is presented. The coupling effects among MTL can be 

represented by distributed voltage and current sources, by which the MTL can be decoupled. Then the voltages and currents along the 

lines are evaluated by the 2nd order FDTD and used to updated the equivalent distributed sources. At last, the solution of MTL is 

obtained using the iterative technique. The proposed method is validated by the numerical examples. And the major advantage of the 

proposed approach is the inherent parallelism, which will decrease the CPU cost, especially for the MTL system with nonlinear devices.  

 
Index Terms—Iterative method, MTL, spatial decomposition, second order FDTD. 

I.  INTRODUCTION 

ASICALLY speaking, the MTL can be solved in the 

frequency domain and time domain. In the frequency 

domain, similarity transformation is always used to decouple 

the partial differential equations describing the MTL [1]. And 

the results of mode variables need to be transformed back to 

the actual variables. In time domain, MTL can be solved by 

FDTD with matrix notation [1]. But for the case of MTL with 

nonlinear loads, the time-domain method can only be chosen.  

The fast growing computational cost is always a serious 

limiting factor for solving MTL, especially for the nonlinear 

terminations. In recent years, the transverse partitioning 

waveform relaxation has been used to evaluate the crosstalk of 

MTL in frequency domain [2]. It also has been introduced to 

solve the coupled interconnects in high-speed circuits [3]. In 

this paper, an iterative method based on the decoupling 

method and the 2nd order FDTD (DM-FDTD) is presented.  

II. DEVELOPMENT OF THE PROPOSED APPROACH 

A. Iterative solution of the MTL 

The MTL system can be described as 
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where V and I represent the voltage and current vectors. Ex 

means the incident electric field along the lines. L, C are the 

per-unit-length parameters. 

In order to decouple the MTL, L and C can be rewritten as 
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where the subscript D and D means the diagonal and non-

diagonal elements, respectively. 

Substituting (2) to (1), one can obtain 
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(3) shows that the coupling effects can be represented by 

the equivalent sources and MTL has been decoupled.  

Applying iterative technique to (3), one can obtain a 

recursive set of decoupled differential equations  
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where r represents the rth iteration step. Fig.1 shows the 

equivalent circuit of the 1st line at the (r+1)th iterative step. In 

Fig.1, xm (m = 0,1K ) mean the position on the 1st line. 
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Fig.1. Equivalent circuit of the 1st line at the (r+1)th iterative step 

Based on the above proposition, one can summarize the 

iterative steps for solving MTL as follows:  

Step 1: e(r) = 0 and q(r) = 0 are assumed with r = 0. 

Step 2: Solving (5) by 2nd order FDTD, one can obtain the 

solution of V(r+1) and I(r+1).   

Step 3: Updating e(r+1) and q(r+1) using (4), one will repeat 

step 2 and step 3 until convergence is achieved.      

The iterative process will be terminated till the relative 

difference between two steps is less than the pre-defined 

tolerance. 

B. Solving the decoupled MTL by the 2nd order FDTD 

Applying the Taylor’s series on the voltage and current in 

(5), one can obtain the 2nd order FDTD recursive relations 

when the terms after 2nd order are truncated [4],  
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where v, i, q, e, L, C is the element of V, I, q, e, L, C in (5), 

respectively. △t and △x is the time and spatial discretization 

step, respectively. n means the time step and k means the 

spatial step. 

Actually, the decoupled MTL can be solved correctly by the 

1st order FDFD or the 2nd order FDTD. However, the iterative 

process need the 1st order time derivative of the solutions 

obtained in the last iterative step, just as shown in (4). For this 

case, 2nd order FDTD can make iterative process work finely   

while 1st order FDTD fails to do that, which can be seen from 

the results of numerical examples. 

III. NUMERICAL EXAMPLES 

A. Ribbon cables 

The terminal configurations of a three-wire ribbon cable 

and the voltage waveform are shown in Fig.2 [1].  
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Fig.2 Ribbon cable (a) Terminal configurations (b) Voltage waveform 
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Fig.3. Comparison between the results of proposed method and that in [1]. (a) 
DM-FDTD with 1st order method. (b) DM-FDTD with 2nd order method. 
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Fig.4. Equivalent voltage sources in the middle of the 2nd line at the 3rd 

iterative step  

Fig.3(a) shows that the results of DM-FDTD with 1st order 

method will be oscillating at the 3rd iterative step, and will be 

diverging at the 4th iterative step. This is because the 

equivalent sources obtained by 1st order FDTD is oscillating, 

just as shown in Fig.4. And this phenomenon will be 

aggravated with the iteration. Fig.3(b) shows that the results of 

the proposed approach can agree well with the results in [1].  

B. Busbar of the substation 

The terminal configurations of the busbar in the substation 

and the voltage waveform are shown in Fig.5 [1]. 
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Fig.5 The simplified model of the busbar in the substation (a) Terminal 

configurations (b) Voltage waveform 

Fig.6 shows that the results of the proposed method can 

almost agree with that in [5]. It also can be seen that the 

results of the proposed method are smoother. 
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Fig.6. Comparison between the results of proposed method and Bergeron 

IV. CONCLUSION 

This paper presents an iterative solution to solve the MTL 

in time domain. The major advantage is the inherent 

parallelism. And the further work will involve frequency-

dependent parameters and nonlinear loads. 
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